Journal of Organometallic Chemistry, 122 (1976) 303–309 © Elsevier Sequoia S.A., Lausanne — Printed in The Netherlands

DIMETHYLTHALLIUM-METHYL-XANTHOGENAT (CH₃)₂TlS₂COCH₃, DARSTELLUNG, EIGENSCHAFTEN UND STRUKTUR

W. SCHWARZ *, G. MANN und J. WEIDLEIN

Institut für Anorganische Chemie der Universität Stuttgart, Pfaffenwaldring 55, 7000 Stuttgart 80 (B.R.D.)

(Eingegangen den 10. Juni 1976)

Summary

The vibrational spectra (IR and Raman) of dimethylthallium methylxanthogenate were investigated. The crystal and molecular structure has been determined. The compound crystallizes in the orthorhombic space group $Pca2_1$. The unit cell with lattice constants a = 10.990, b = 6.819 and c = 11.245 Å contains 4 molecules. Thallium is seven-coordinated in the crystal lattice.

The two thallium—sulfur distances in the nearly planar four-membered ring are almost equal. The distances from thallium to the next nearest oxygen and sulfur atoms are slightly longer; the distance to the next again nearest sulphur atom is markedly longer.

Zusammenfassung

Dimethylthallium-methyl-xanthogenat wurde schwingungsspektroskopisch (IR und Raman) untersucht. Die Kristall und Molekülstruktur wurde bestimmt. Die Verbindung kristallisiert in der orthorhombischen Raumgruppe $Pca2_1$. Die Elementarzelle mit den Gitterkonstanten a = 10.990, b = 6.819 und c = 11.245 Å enthält 4 Moleküle.

Das Thallium ist im Kristallgitter siebenfach koordiniert. Dabei sind die beiden Thallium—Schwefel-Abstände im weitgehend planaren Vierring nahezu gleich. Die Abstände des Thalliums zu dem nächst benachbarten Sauerstoff- und Schwefelatom sind etwas, zu einem weiteren Schwefelatom deutlich grösser.

Einleitung

Einfache Trialkyle der Elemente Al, Ga, In oder Tl reagieren mit SO_2 , SO_3 , CO_2 , COS oder CS_2 in der Regel rasch und vollständig unter Einschiebung dieser elektrophilen Agenzien in eine (oder auch mehrere) der Metall-Kohlenstoffbindungen, wobei Dialkylmetall-Sulfinate, -Sulfonate, -Carboxylate, -Thiocarboxy ate bzw. -Dithiocarboxylate gebildet werden [1,2]. 304

Monosubstitutionsprodukte des Typs R_2MX (mit X = Hal, OR', SR', NR'2 und $R = CH_3$ und C_2H_5) zeigen gegenüber den genannten Reaktanden ein hiervon meist abweichendes Verhalten. Beispielsweise wird bei den Monohalogeniden entweder keine Reaktion mit SO₂, CO₂ und CS₂ beobachtet (Ga, In, Tl) oder es tritt ausschliesslich eine Einschiebung in die noch vorhandenen M-C-Bindungen auf (Al) [1,3,4,5]. Bei den Alkoxiden, Mercaptiden oder Alkylamiden des Aluminiums werden neben den beiden Al-C-Bindungen auch die Al-X-Bindungen gespalten, doch bilden sich nicht in jedem Fall analysenreine Einschiebungsverbindungen. Im Gegensatz hierzu reagieren die homologen Verbindungen der schweren Elemente dieser Gruppe ausschliesslich unter Spaltung der M-X-Bindungen.

Das in dieser Arbeit schwingungsspektroskopisch und röntgenographisch charakterisierte Dimethylthallium-methyl-xanthogenat ist durch Einschiebung von CS_2 in die Tl–O-Bindung des in Lösung dimeren Dimethylthalliummethoxids dargestellt worden.

Darstellung und Schwingungsspektrum

Frisch durch Umsetzung stöchiometrischer Mengen Tl(CH₃)₃ und wasserfreiem Methanol bereitetes Dimethylthalliummethoxid wird in benzolischer Lösung mit einem etwa 20%igem Überschuss an CS₂ versetzt. Letzteres wird unter streng selektiver Einschiebung in die Tl—O-Bindung des Methoxids aufgenommen, wobei nahezu quantitativ Dimethylthallium-methyl-xanthogenat gebildet wird, das nach dem Abziehen des Lösungsmittels und evtl. unumgesetzten Kohlenstoffdisulfids, als farbloser, kristalliner Feststoff ausfällt. Die Verbindung kann zur Reinigung entweder bei 80—85°C und 10⁻⁴ mmHg sublimiert oder aus CH₂Cl₂ bzw. CCl₄ umkristallisiert werden. Ebullioskopische Molmassebestimmungen und die Ergebnisse eines 70 eV Massenspektrums weisen dieses nicht hydrolyseempfindliche Xanthogenat als monomer aus [3].

Das Protonenresonanzspektrum in CH_2Cl_2 zeigt für die Thalliummethylprotonen ein Dublett bei 1.37 ppm (bezogen auf TMS) mit einer für Dimethylthallium-Verbindungen üblicherweise in wenig polaren Lösungsmitteln beobachteten Kopplungskonstanten $J(^{205}TlCH)$ von etwa 360 Hz [6] (Die Kopplungskonstante $J(^{203}TlCH)$ ist 3–4 Hz geringer.) Das Singulettsignal der OCH₃-Gruppe tritt mit 4.03 ppm erwartungsgemäss bei niedrigeren Feldstärken auf.

Entscheidende Hinweise auf die Struktur von $(CH_3)_2 TIS_2COCH_3$ liefert das IR- und Ramanspektrum. Für den $(CH_3)_2 TI$ -Molekülteil wird die asymmetrische (540 cm^{-1}) und die symmetrische (482 cm^{-1}) TIC₂-Valenz sowohl im IR- als auch im Ramanspektrum gefunden, was eindeutig für eine gewinkelte CH₃TICH₃-Gruppierung spricht. Weiterhin stimmen die Schwingungen der Xanthogensäuregruppe so weitgehend mit den Frequenzen des Schwingungsspektrums von Na⁺[S₂COCH₃]⁻ überein, dass an einer identischen Konfiguration dieses Rests (d.h. zum Beispiel identischer Ladungsausgleich zwischen den beiden S-Atomen und gleiche Kopplungsverhältnisse des S₂CO-Skeletts) im Thalliumderivat nicht zu zweifeln ist.

Damit sprechen alle Ergebnisse für eine planare Vierringstruktur:

TABELLE 1

IR- UND RAMANFREQUENZEN DES FESTEN (CH₃)₂TIS₂COCH₃ UNTERHALB 1500 cm⁻¹

IR (Int.)	RE (Int.)	Zuordnungen
1445s 1438s-m	1444ss, (br)	$\delta_{as}(CH_3-O)$ $\delta_{s}(CH_3-O)$
1420(Sch)	1428s	$\delta_{as}(CH_3(-O + -TI))$
1222s-m 1190(Sch) 1185sst	1192s	$ \rho(CH_3-O) + v_{as}(CS_2) $
1168(Sch) 1145st 1120sst, (br)	1172sst 1168(Sch) [}] 1146s-m 1125s, (br)	$\begin{cases} \delta_{s}(CH_{3}(-TI)) \\ \rho(CH_{3}-O) + \nu_{as}(CS_{2}) \end{cases}$
1081st 1035sst, (br)	1083ss, (br) 1032m, (br)	$v_{as} + v_s(C-O-C)$
975(Sch) 935s	948s-m	$ \} v_{s}(COC) + v_{s}(CS_{2}) $
790st 738m	796s, (br)	} ρ(CH ₃ ΤΙ)
611s-m 541st 482ss 468st 345st 280m	612sst 572s 540s-m 482sst [482] 346st-m 288s-m 186s-m	$\nu_{s}(CS_{2}) + \delta(COC)$ $\gamma(CS_{2})$ $\nu_{as}(TIC_{2})$ $\nu_{s}(TIC_{2})$ $\delta(COC) + \nu_{s}(CS_{2})$ $\delta(CS_{2})$ $\gamma(COC)$ $\delta(OCS) + \delta(COC)$

ss = sehr schwach, s = schwach, m = mittel, st = stark, sst = sehr stark, br = breit, Sch = Schulter.

Mit Sicherheit werden diese monomeren Einheiten im Feststoff etwa wie in den Dialkylindiumacetaten [8] oder -thioacetaten [9] verknüpft sein, doch sind Hinweise auf derartige Assoziationen dem IR- bzw. Ramanspektrum nicht zu entnehmen.

Die IR- und Ramanfrequenzen unterhalb 1500 cm⁻¹ sind in Tab. 1 zusammengefasst; die Zuordnung für die Schwingungen des Xanthogenatrests wurden analog der Arbeit von Mattes [7] vorgenommen.

Kristallstruktur

Kristalldaten

Formel: $(CH_3)_2 TlS_2 COCH_3$; Formelgewicht: 341.6; Elementarzelle: orthorhombisch, a = 10.990(9) b = 6.819(4) c = 11.245(6) Å; Volumen: 842.7(9) Å³; Gemessene Dichte: $\rho = 2.73$ g cm⁻³ (pykn.), Röntgenographische Dichte: $\rho =$ 2.692(3) g cm⁻³; Absorptionskoeffizient für Mo- K_{α} : 224.6 cm⁻¹; Raumgruppe: *Pca2*₁; Zahl der Moleküle in der Elementarzelle: Z = 4.

Strukturanalyse

Aufgrund der auf den Aufnahmen erkennbaren Auslöschungen (0kl: k = 2n + 1 und h0l: l = 2n + 1) kommen die beiden orthorhombischen Raumgruppen

306

TABELLE 2

ORTS- UND TEMPERATURPARAMETER (IN KLAMMERN DIE STANDARDABWEICHUNGEN (0) BEZOGEN AUF DIE LETZTEN DEZIMALEN)

	U	x/a	у/b	z/c	
T1	3.84	0.5521(2)	-0.0547(6)	0.2500(0)	
S(1)	3.54	0.5499(20)	0.1343(40)	0.4891(20)	
S(2)	4.35	0.3384(22)	0.1876(47)	0.3119(22)	• • • •
C(1)	3.60	0.2302(74)	0.4031(151)	0.4497(77)	
C(2)	2.27	0.2240(98)	0.3914(100)	0.5128(113)	
0	3.03	0.3437(41)	0.3002(85)	0.5385(44)	
C(3)	2.78	0.4813(55)	-0.3294(125)	0.2991(55)	
C(4)	4.02	0.6442(90)	0.1906(172)	0.1903(82)	

Die isotropen Temperaturfaktoren $U = B/8\pi^2$ sind mit 10² multipliziert.

Pbcm und $Pbc2_1$ in Frage. Nach Vertauschen von a und b erhält man für letztere die in den "International Tables" [10] übliche Aufstellung $Pca2_1$. Die *E*-Wert Statistik liess die azentrische Raumgruppe $Pca2_1$ zumindest als die wahrscheinlichere erscheinen.

Unter Berücksichtigung der einzigen vierzähligen Lage dieser Raumgruppe liessen sich der x- und y-Parameter (z-Parameter frei wählbar) der Thalliumlage einer Patterson-Funktion eindeutig entnehmen. Eine erste dreidimensionale Fouriersynthese der mit dieser Atomlage erhaltenen Vorzeichen lieferte die Ortsparameter der beiden Schwefelatome, die Lagen der noch fehlenden Leichtatome wurden durch Differenz-Fourier-Synthesen erhalten. Die H-Atome wurden nicht berücksichtigt.

Die Verfeinerung nach der Methode der kleinsten Fehlerquadrate mit voller Matrix und isotropen Temperaturfaktoren führte zu R = 0.092 ($R = \Sigma w(||F_0| - |F_c||)/\Sigma w|F_0|$) *.

TABELLE 3

Abstand (Å)		Winkel (°)		
TI-S(1)	2.98(2)	S(1)-Tl-S(2)	62.6	
TI—S(2)	2.96(3)	C(3)-TiC(4)	170.9	
S(1)-C(1)	1.80(9)	TI-S(2)-C(1)	88.8	
S(2)-C(1)	1.73(9)	TI-S(1)-C(1)	86.7	
C(1)0	1.29(10)	S(1)-C(1)-S(2)	121.9	
O-C(2)	1.48(11)	C(1)-O-C(2)	117.1	
TIC(3)	2.10(8)			· · · · · ·
TI-C(4)	2.07(11)			

BINDUNGSABSTÄNDE UND -WINKEL (IN KLAMMERN STANDARDABWEICHUNG DER ABSTÄNDE BEZOGEN AUF DIE LETZTEN DEZIMALEN)

* Die Tabelle der berechneten und beobachteten Strukturfaktoren kann vom Autor angefordert worden.

Fig. 1. Schematische Darstellung der Bindungsverhältnisse im $(CH_3)_2$ TlS₂COCH₃. (Die Zelle ist gegenüber Tab. 2 in der x-Richtung um 1/4 verschoben; an einem Molekül sind die Methylgruppen am Thallium der Übersichtlichkeit wegen weggelassen.)

In Tabelle 2 sind die gefundenen Orts- und Temperaturparameter, in Tabelle 3 die wichtigsten Bindungsabstände und -winkel zusammengestellt. Die Bezeichnung der Atome entspricht der von Fig. 1.

Beschreibung und Diskussion der Struktur

Das Dimethylthallium-methyl-xanthogenat kristallisiert in Form nahezu planarer Vierringe von $>TlS_2C$ —. Die maximale Abweichung von einer durch diese vier Atome definierten besten Ebene beträgt 0.02 Å. Die Vierringe sind gegen die Ebene (010) um ca. 35° geneigt.

Die beiden TI-S-Abstände sind innerhalb der Fehlergrenzen gleich; es kann innerhalb der S₂C-Gruppierung vollkommener Ladungsausgleich angenommen werden; die Abstände entsprechen bereits bekannten Werten von Strukturuntersuchungen an Tl(I)S₂P(C_2H_5)₂ [11] und Tl(I)S₂CN(CH₃)₂ [12].

Auch die S–C-Abstände sowie die Winkel S(1)–Tl–S(2) und S(1)–C(1)–S(2)(Bezeichnung s. Fig. 1) stimmen gut mit bereits bekannten Werten überein. Der C(1)–O-Abstand ist mit 1.28Å gegenüber einer Einfachbindung beträchtlich verkürzt. Die Ergebnisse sind in Tabelle 4 zu Vergleichszwecken zusammengestellt, wobei noch einige Werte einer Strukturuntersuchung am Pb(S₂COCH₂CH₃)₂ [13] aufgeführt sind.

Die gewinkelte Anordnung der C(3)–Tl–C(4)-Gruppierung (171°) entspricht den Erwartungen aus spektroskopischen Befunden.

Die molekulare Packung erfolgt, wie aus Fig. 1 zu erkennen ist, durch eine zweidimensionale Vernetzung in Schichten etwa parallel zu (010). Das Thallium erreicht dabei die nicht sehr häufig anzutreffende Koordinationszahl 7, die auch 308

TABELLE 4

VERGLEICH EINIGER BINDUNGSLANGE	EN (Å) UND -WINKE	$CL (°) IN (CH_3)_2 TIS_2 CO$	OCH_3 , $TIS_2P(C_2H_5)_2$.
$TIS_2CN(CH_3)_2$ UND Pb(S ₂ COC ₂ H ₅) ₂			

	the second s		
	(CH ₃) ₂ TIS ₂ COCH ₃	TIS ₂ P(C ₂ H ₅) ₂ [11]	TIS ₂ CN(CH ₃) ₂ Pb(S ₂ COCH ₂ CH ₃) ₂ [12] [13]
TI-S	2.98	3.06	2.99 Pb—S 2.79 2.74
•	2.96	 ,	3.03 2.95 2.84
sC	1.80		1.74 1.78 1.70
	1.73	_	1.69 1.66 1.68
C0	1.29	* 	C-N 1.39 C-O 1.28 1.30
S(1)-11-S(2)	62.6	66.2	
S(1)-C(1)-S(2)	121.9	<u> </u>	121 118 124

bereits bei $TlS_2CN(CH_3)_2$ [12] gefunden wurde. Die fünf Atome (4 Schwefel und 1 Sauerstoff) der Basisfläche der allerdings stark verzerrten pentagonalen Bipyramide liegen nahezu in einer Ebene. Der maximale Abstand eines Atoms S(2)' von einer durch die 6 Atome definierten besten Ebene beträgt 0.14 Å, im Mittel 0.1 Å. Die Winkel der fünf koordinierten Atome zu den beiden Methylgruppen am Thallium liegen zwischen 80° und 98°.

Experimentelles

Zur Darstellung von $(CH_3)_2 TlS_2 COCH_3$ werden 2–2.5 g $(CH_3)_2 TlOCH_3$ in der vorne beschriebenen Weise mit CS₂ unter heftigem Rühren bei Raumtemperatur zur Reaktion gebracht. Nach beendeter Zugabe wird die Reaktionsmischung noch etwa 1/2 Stunde zum Sieden erhitzt, anschliessend entfernt man das Lösungsmittel und reinigt den verbleibenden Festkörper durch eine Vakuumsublimation. Die Ausbeute nach diesem Reinigungsvorgang betrug etwa 80%, bezogen auf das im Unterschuss eingesetzte Methoxid. Analysen: Gef.: C, 14.1; H, 2.84; S, 18.6; Tl, 59.4. C₄H₉OS₂Tl ber.: C, 14.06; H, 2.66; S, 18.77; Tl, 59.82%.

Das IR-Spektrum wurde mit einem Perkin—Elmer-Gerät 457 als Nujol- bzw. Hostaflonverreibung zwischen CsJ-Scheiben aufgenommen, das Festkörperramanspektrum in Schmelzpunktskapillaren mit einem Spektrophotometer PHO der Firma Coderg. Die Anregung erfolgte hierbei mit der grünen 5145 Å-Linie eines Argonlasers.

Für die Röntgenstrukturanalyse geeignete Kristalle erhielten wir durch Umkristallisieren frisch sublimierter Proben aus sorgfältig getrocknetem Methylenchlorid.

Vorläufige Gitterkonstanten wurden aus Schwenk-, Buerger-Präzessions- und Weissenberg-Aufnahmen ermittelt. Die Intensitäten wurden an einem lochstreifengesteuerten Siemens-Einkristalldiffraktometer gemessen. Die Messung erfolgte nach der Fünfwert-Methode und $2\theta - \omega$ -Scan. Für starke Reflexe wurde die Messzeit automatisch erniedrigt bzw. es wurden Schwächungsfilter vorgeschaltet. Bis zu $\theta_{max} = 20^{\circ}$ wurden 423 unabhängige Reflexe erhalten, davon hatten 30 eine Intensität $< 3\sigma$.

Genaue Gitterkonstanten wurden durch Vermessen der θ -Werte von 22 Reflexen am Diffraktometer und anschliessender Verfeinerung mit dem Programm PARAM [14] erhalten. Die Intensitäten wurden in üblicher Weise in F_0 -Werte umgerechnet und mit Gewichten versehen. Das Gewichtsschema wurde dem relativen Fehler der Messung angepasst. Ausserdem wurde eine rechnerische Absorptionskorrektur mit dem Programm ABSORB [14] angebracht, die die deutlich blättchenförmige Gestalt des vermessenen Kristalls $(0.007 \times 0.023 \times 0.1)$ jeweils in cm) berücksichtigte.

Zur Erstellung des Lochstreifens für die Steuerung des Diffraktometers sowie zur Auswertung des Ausgabelochstreifens wurden institutseigene Programme verwendet. Für die Rechnungen wurde das X-Ray Programmsystem [14] in der Version von 1972 und der Bearbeitung für die CDC 6600 benützt.

Die Atomformfaktoren wurden nach Cromer und Mann [15] parametrisiert.

Dank

Der Deutschen Forschungsgemeinschaft und dem Fonds der Chemischen Industrie danken wir für die Bereitstellung von Sachmitteln.

Literatur

- 1 J. Weidlein, J. Organometal. Chem., 49 (1973) 257. (siehe dort weitere Literatur).
- 2 H. Olapinski, J. Weidlein und H.D. Hausen, J. Organometal. Chem., 64 (1974) 193.
- 3 G. Mann, Dissertation Universität Stuttgart, 1974.
- 4 A.T.T. Hsieh, J. Organometal. Chem., 27 (1971) 293.
- 5 A.G. Lee, J. Chem. Soc., (1970) 476; G.B. Deacon und V.-N. Garg, Inorg. Nucl. Chem. Lett., 6 (1970) 717.
- 6 H. Kurosawa und R. Okawara, Organometal. Chem. Rev. A, 6 (1970) 65.
- 7 R. Mattes und G. Pauleickhoff, Spectrochim. Acta A, 29 (1973) 1339.
- 8 F.W.B. Einstein, M.M. Gilbert und D.G. Tuck, J. Chem. Soc. Dalton, (1973) 248; H.D. Hausen und H.U. Schwering, Z. Anorg. Allg. Chem., 398 (1973) 119.
- 9 H.D. Hausen und H.J. Guder, J. Organometal. Chem., 57 (1973) 243.
- 10 International Tables for X-Ray Crystallography, Birmingham, 1969.
- 11 S. Esperas und S. Husebye, Acta Chem. Scand, A, 28 (1974) 1015.
- 12 P. Jennische und R. Hesse, Acta Chem. Scand., 27 (1973) 3531.
- 13 H. Hagihara und S. Yamashita, Acta Crystallogr., 21 (1966) 350.
- 14 J.M. Stewart, G.J. Kruger, H.L. Ammon, C. Dickinson und S.R. Hall, X-Ray System of Crystallographic Programs University of Maryland, Maryland, U.S.A. 1972.
- 15 D. Cromer und G. Mann, Acta Crystallogr. A, 24 (1968) 321.